
 118

6
The Approach

In Chapter 2 we mentioned that the exception handling code is often the

least well understood (Sinha and Harrold, 1998; Robillard and Murphy, 2000;

Robillard and Murphy, 2003) and tested (Sinha and Harrold, 1999; Fu and Ryder,

2005) part of the system. Since it is not the primary concern to be implemented, it

does not receive much attention during system design, implementation and test

phases. Moreover, testing the exception handling code is inherently difficult.

Firstly, because it is tricky to simulate some exceptional conditions during tests

(e.g., network problems). Secondly, because the large number of different

exceptions that can happen in a system in runtime may lead to test-case explosion

problem (Hanenberg et al., 2003).

The lack of verification approaches for the exception handling code of AO

systems and the difficulties mentioned above – related to the exception handling

code testing - stimulated the present work. This chapter presents a verification

approach based on static analysis, to check the reliability of the exception

handling code of AO applications. This approach is based on SAFE, the

exception-flow analysis tool presented on the previous chapter. SAFE is used in

this approach to help developers to reason about the exception flow and find bugs

on the exception handling code of AO applications developed in AspectJ.

6.1.
Checking the Reliability of Exception Handling Code

The goal of the proposed approach is to help developers to prevent the

exceptions signaled or handled by aspects from threatening the robustness of the

application they are composed to. As illustrated in Figure 24, the aspects that

compose an AO application may be of two kinds: application aspects and library

aspects.

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 119

Figure 24. Types of aspects in an AO application.

The application aspects are developed in the application core, and may (i)

implement a crosscutting concern by their own, (ii) integrate existing

functionalities of the base code, or (iii) integrate the base code with functionalities

available in OO libraries (see scenario 1 in Figure 24). The library aspects are

pre-compiled aspects, implemented by third party developers, that implement

traditional crosscutting concerns (i.e., performance monitoring, security, and

transaction management) that would be spread in many application modules

otherwise (Bodkin, 2006). Reusing an aspect library often means: (i) extending an

abstract aspect with a concrete aspect that redefines the points on the application

where the aspect should apply (see scenario 3 in Figure 24); or (ii) using declare

parents AspectJ construct
28

 to add a tag interfaces (Colyer, 2004) to some of the

elements in the application (see scenario 2 in Figure 24) – which will identify

which elements will be intercepted by the library aspects.

In this chapter we focus on the robustness and consistency issues pertaining

to exceptional flow of programs using such aspect libraries or application

aspects. When developing application aspects and reusing library aspects in

exception-aware applications, the AO developer faces common difficulties. As

mentioned on previous chapters, when an aspect adds a new functionality to a

28
 The declare parents AspectJ construct enables the developer to change the type

hierarchy of a system.

 EJPs

OO Library

Aspect Library

Aspect

Aspect

Class

Library Aspect

ApplicationAspect

Aspect

Aspect

Class

Aspect Library

Aspect

Aspect

Aspect

Aspect

<<intertype>><<intertype>>

Appication Aspect

(scenario 3)

(scenario 2)

(scenario 1)

Aspect

Legend:

AspectAspect

crosscuts

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 120

system, this additional functionality can also bring new exceptions (e.g., access of

null references, a noisy user input or faults on underlying middleware or

hardware). Consequently, even simple aspects used for logging or monitoring

(Coelho et al., 2006b) purposes, for instance, may throw exceptions that will flow

through the system. If not adequately handled such exceptions may remain

uncaught or may be handled by an existing handler on the base code (i.e.,

unintended handler action (Miller and Tripathi, 1997)).

 One may argue that such problems also occur in OO development: we do

not know which runtime exceptions that may flow from OO code as well and,

consequently, cannot prepare the code to deal with them. Indeed, this is a real

problem in OO development, and some static analysis tools, e.g., as proposed in

(Robillard and Murphy, 2003; Fu et al., 2005), could be used to deal with it.

However, some characteristics of aspect-oriented compositions strengthens these

problems, such as: (i) the ability to externally modify the behavior of the base

code (Krishnamurthi et al., 2004; Aldrich, 2005), (ii) some developers and

approaches advocating an oblivious development process (Filman and Friedman,

2005), (iii) the load-time weaving (Colyer, 2004; Bodkin, 2005; Bodkin, 2006)

available in some AO languages, (iv) and the quantification property (Filman and

Friedman, 2005) (as detailed in Section 6.1.1).

Therefore, while aspect-oriented compositions allow the development and

reuse of crosscutting concerns, they might render less useful if they introduce new

exceptions that may lead to potential faults. Currently, there is no approach or

supporting tool
29

 to help application developers to: (i) discover which exceptions

may flow from an application aspect or a library aspect, (ii) prepare the code to

deal with them; or (iii) check whether such exceptions were adequately handled.

Such approach would reduce or altogether avoid the threats, posed by application

aspects and especially third party aspects (from aspect libraries), to applications

robustness in exceptional scenarios.

This chapter focuses on the exceptions that may flow from aspects, the

consequences that they may bear, and how to deal with them. The main questions

we seek to address here are the following:

29 The static analysis tools that find exception paths in OO programs cannot be used in a

straightforward fashion in AO programs, because they cannot interpret the effects on bytecode

after the aspect weaving process.

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 121

• What are the potential consequences of developing or reusing aspects

that may throw exceptions?

• How can one reduce the number of potential faults associated with

them?

We believe the answers to these questions are of interest to a broad

audience, due to the increasing number of AO developers. In the following

sections we firstly discuss about challenges associated with aspect reuse in the

presence of exceptions and detail the relatively new concept of aspect libraries.

Then we present a verification approach based on static analysis that allows

programmers to statically look for bugs on the exception handling code of aspect-

oriented development systems. This verification approach takes into account

exceptional situations neglected by the verification approaches for AO programs

proposed so far. Section 6.3 shows how SAFE tool can be used to support some

steps of the approach. Section 6.4 summarizes our experience when applying this

approach to different aspect reuse and development scenarios. Section 6.5

presents an analysis of the precision of the SAFE tool – since the approach’s

effectiveness is strongly related to the precision of the tool output. And finally in

Section 6.6 we provide further discussion of lessons learned.

6.1.1.
The Characteristics of AO Compositions x the Development of
Exception-ware AO Systems

Some characteristics of aspect-oriented development strengthens existing

kinds of failure (e.g., uncaught exceptions, unintended handler action) on OO

development concerning the way exceptions are handled and thrown inside the

system. The modification (Krishnamurthi et al., 2004; Aldrich, 2005) performed

by aspects works by reverse, also known as the inversion of control: the aspect

declares which classes it should affect rather than vice-versa. This means that

adding and removing aspects from a system most often
30

 does not require editing

the affected class definitions. Consequently, when (re-)using aspects we cannot

easily protect the advised code from the exceptions that may flow from them.

Figure 25 illustrates a before advice that intercepts an application method and

30
 When intertype declararions are used some editing may be necessary.

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 122

throws an exception. This exception will flow through the base code and

interrupting the normal control flow of the advised code. In OO system

development we can simply add a try-catch block surrounding the reused piece

of code to avoid exceptions from flowing from it and affecting the normal

application control flow. On the other hand, on the AO system presented in Figure

25, since the pointcut language available in most AO languages does not allow the

developer to intercept the execution of the specific before advice that threw the

exception, the AO developer cannot to avoid the exceptions (thrown by the

before advice) from flowing though the system.

before advice method (inner structure)

methodexception

Legend:

system layer

GUI

Business

BD

Advised application
call graph

advise method

ExEx

statement

Figure 25. Consequences of aspectual modifications on the base code

Moreover, some AO development approaches rely on the obliviousness

property (Filman and Friedman, 2005). According to it the developer of the base

code does not need to know that the code will be affected by aspects. As a

consequence, the application developer cannot prepare the code to deal with

exceptions that may escape from aspects. Even if the aspect developer creates an

aspect responsible for handling the exceptions thrown by crosscutting concerns,

the AO developer cannot assure that this exception will not be mistakenly handled

by a catch clause on the base code (see Inactive Handler Aspect in Chapter 4).

Third, some AO languages enable load-time weaving. The class loader reads

a configuration file that specifies the aspects to be woven when applications are

loaded. Thus, the developer only needs to deploy the aspect bytecode together

with the application to be advised. This is the scenario that occurs most often

when aspect libraries are reused. Not having access to the source code of

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 123

imported aspects also has its drawbacks: the impact of aspects on the exceptional

flow of applications is only discovered at runtime.

Last but not least, AO development is often based on the quantification

property which refers to the desire of programmers to write programming

statements with the following form: “In programs P, whenever condition C arises,

perform action A”. As a result aspects have the ability to affect semantically

unrelated points in the code. Therefore, when a new exception is introduced by an

aspect in an application, new handlers should be defined in different places within

the base code (one for each path in the call graph that may reach the affected

method – see Figure 26). Even if the AO developer creates specific exception

handling aspects (Filho et al., 2007)) for handling the new exceptions, the s/he

cannot assure that such exception will not be mistakenly handled by a catch clause

on the base code (see Inactive Handler Aspect in Chapter 4). Moreover, since the

way the exception should be handled o these points may differ, one exception

handling aspect per exception would not be sufficient.

GUI

Business

BD

GUI

Business

BD

unaffected methodmethod possibly affected by a new exception

Legend:

system layer advised method

Advised application
call graph

Application call graph

Figure 26. Consequences of quantification property in the presence of

exceptions.

Since the exception handling policy
31

 (Robillard and Murphy, 2000) of an

application is almost always based on its architecture, adding exceptions on

unrelated points in the code may potentially break the exception handling policy.

31 The exception handling policy comprises a set of design rules which defines the system

elements responsible for signaling, handling and re-throwing the exceptions; and the system

dependability relies on the obedience to such rules.

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 124

The combination of these characteristics, therefore, results in fault-prone

exception handling scenarios in AO systems.

6.2.
Status of Current Aspect Libraries

Although pre-built aspect libraries are a relatively new reuse artifact, several

useful collections have already become available, including: the Spring AOP

aspect library (Johnson, 2007), the Glassbox Inspector
32

, the JBoss Cache
33

, and

GOF patterns aspect library
34

. Such libraries implement traditional crosscutting

concerns (i.e., performance monitoring, security, and transaction management),

and enable the developer to extend the functionalities of existing applications

avoiding significant coupling and large re-investments (Bodkin, 2006).

According to Bodkin (2006) “reuse will prove to be the most important benefit

from adopting Aspect Oriented Programming.”

While aspect libraries introduce new possibilities for application

composition, the circumstances mentioned above (see Section 6.1.1) may threaten

the application’s robustness and design consistency. Aspect libraries developers

may do their best to ensure that libraries’ functions do not create faults that impact

the applications in which they are composed. However, unexpected behavior in

aspect library code (e.g., unanticipated null values, undocumented runtime

exceptions thrown by libraries) is often present (Coelho et. al, 2008).

In order to know which exceptions may flow from aspect libraries,

programmers must rely on the libraries documentation - that is, more than often,

neither complete nor precise. As a consequence, the developer may only realize

the existence of unexpected exceptions thrown by an aspect library, by observing

the failures caused by them on the application in runtime, such as: uncaught

exceptions – which lead to unpredictable software crashes; and unintended

handler actions – which lead to wrong recovery actions (e.g., wrong error

messages presented to the user).

The additional expense that is required to account for the effects of

exception occurrences on aspect libraries may not be justified unless exceptions

32
 https://glassbox-inspector.dev.java.net/

33
 http://labs.jboss.com/jbosscache/

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 125

occur frequently in aspect libraries in practice. A recent study (Cabral and

Marques, 2007) shows that the amount of code dedicated to exception occurrences

(exception raising and handling) in OO libraries is approximately 7% of the total

number of LOC. We conducted a similar study to determine the frequency with

which aspect libraries use exception-related constructs. In this study, we examined

the assets of aspect libraries from different sources, and obtained the information

summarized in Table 12. In the observed subjects from 2,09% to 8,82% of the

total lines of code were dedicated to exception raising and handling concerns (see

LOC EH in Table 12).

Aspect Libraries LOC LOC EH % LOC EH # try # catch # throw

GlassBox Inspector (monitor) 3621 90 2,49% 16 16 14

Spring AOP 98976 8731 8,82% 975 1105 1847

JBoss Cache 41582 870 2,09% 363 363 494

Table 12. Characteristics of the exception handling (EH) code on aspect libraries.

Furthermore, the addition of exception-related constructs in several main

stream programming languages (e.g., Java, C++, .Net) attests the importance of

exception handling mechanism in the development of current systems.

6.3.
The Verification Approach

In this section, we present an approach to help AO developers to check the

reliability of the exception handling code. When implementing application

aspects or re-using library aspects (i.e., aspects developed by third party

developers), the developer should account for the exceptional conditions that may

arise from them. Otherwise, exceptions may cross aspects boundaries and impair

the system’s integrity and robustness due to uncaught exceptions and unintended

handler actions. Figure 27 illustrates the main steps that compose our approach.

34
 http://hannemann.pbwiki.com/Design+Patterns

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 126

1. Discover the

Exception Interfaces

of Aspects

2. Specify the

Exception Handling

Contracts

Application code

(source or bytecode)

Aspect Library

3. Implement the

Exception

Handling Code

5. Check the

Exception

Handling

Contracts

4. Calculate the

Exception Paths

excep. interfaces +

affected joinpoints

(per advice)

Aspect

Aspect

Aspect

Aspect

Exception Interface

SAFE

Exception Paths

Application after

aspect library integration

Aspect

Aspect

<<crosscuts>>

SAFE

<exception>:

<signaler>: <handler>

Exception handling

contracts

GUI

Business

BD

SAFE

Contract ID:

Status: broken

List of broken

contracts

Figure 27. The proposed approach.

Much of the effort in our approach involves working out how to effectively

integrate aspect into the base code without the risk of introducing the faults on the

exception handling code – which may represent causes of potential software

crashes. The verification approach presented here complements the available AO

testing approaches that focus on the system normal control flow (Zhao, 2003;

Alexander et al., 2004; Lopes and Ngo, 2005; Coelho et al., 2006a; Lemos et al.,

2006; Xie and Zhao, 2006; Xu and Xu, 2006; Lemos et al., 2007; Massicotte et

al., 2007). These approaches perform unit and integration tests and looks for faults

on the AO code (e.g., too general or too specific pointcuts, conflicting aspect

interactions). These approaches neglect the exception handling code, firstly due to

the difficulty of simulating exception occurrences during tests and, secondly,

because the large number of possible exception can lead to a test case explosion

problem, as mentioned before.

The approach is based on SAFE tool, and comprises of the following steps,

as illustrated in Figure 27:

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 127

1. Discover the Exception Interfaces of Aspects. In this step the SAFE tool is

used to discover the list of exception types that may flow from each advice

defined on application aspects or library aspects that crosscuts the base code.

Since the SAFE tool works on the woven bytecode, at this step the aspect library

needs to be combined (i.e., woven) with the base code. In case the elements to be

affected by the aspect were not already implemented, a set of stubs may be

defined and combined with the aspect to enable the analysis
35

. Moreover, once the

exception interfaces of a set of aspects are discovered it can be reused along the

development cycle (see Chapter 8, Section 8.3).

2. Specify the Exception Handling Contracts. Once the exception

interfaces of aspect advices have been discovered, the developer should specify

which elements are responsible for handling them. In our approach, this

information is represented as a set of exception handling contracts. As mentioned

in Chapter 5, Section 5.3.4, the exception handling contracts specify the

Signaler-Handler relation per exception thrown by aspects, and are specified in

the SAFE tool in XML format.

In case the application has already defined an exception policy, the

exception handling contracts defined for aspect-signaled exceptions should be

defined in accordance to it. The advantage of representing the exception handling

contracts in a semi-structured way is that they can be used afterwards to partially

automate the contract checking step.

3. Implement the Exception Handling Code. In this step, the developer should

implement exception handling solutions according to the specified contracts.

Examples of exception handling solutions to be implemented in this step are:

• Error isolation: This strategy avoids the exception signaled by an aspect

from flowing to the client application. The handler can be defined in an

exception handling aspect (i.e., as aspect defined to handled exceptions

(Filho et al., 2007)) that directly intercepts library aspects or application

aspects. Or in the case of application aspects for which the developer has

35 Some approaches as the one proposed by Xie and Zhao (2006) automatically generate a set of

stubs to be intercepted by aspects.

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 128

access to the source code, handlers should be defined on every advice

method that signals an exception.

• App-specific error handling: the developer can define an exception handling

aspect that intercepts specific join points in the application code (handling

on aspects), or define catch clauses inside application elements that will be

responsible for handling the exceptions thrown by aspects (although this

design practice is not advocated by most of the current AO development

approaches).

4. Calculate the Exception Paths. In this step, the SAFE tool analyses the

bytecode of the advised application, and calculates the exception path of each

exception that may be thrown by aspects. Notice that if there is no handler for a

specific exception, the exception path starts from the signaler and finishes at the

program entrance point. After the exception paths are calculated, if the exception

handling contracts were defined on the structured way, the SAFE tool analyzes

every exception path in order to discover whether the handling contracts, defined

in Step 2, were obeyed by them.

5. Manually Inspect the Exception Handling Code. In this step the developer

should inspect the exception handling code related to the broken exception

handling contracts. By doing so, the developer will diagnose the cause of errors on

the exception handling code. Moreover, the developer may gain a fine-grained

view of how exceptions are handled (e.g., logging, presenting an error message to

the user, or swallowing). After discovering the cause of the exception handling

error the implementation steps 3, 4, and 5 should be repeated until every exception

is adequately handled on the advised application. This step based on manual

inspections is necessary in this approach, because the exception handling contracts

(defined on SAFE tool) can only express simple constrains concerning the way

the exception should be caught (e.g., which element should handle the exception).

Thus, errors concerning the actions performed inside the handler after catching the

exceptions can only be discovered by manual inspections in the current approach.

We can observe that the steps presented above - that compose the

verification approach - can also be applied in OO development, with slight

modifications. For instance, at step 1, instead of discovering the exception

interfaces of aspects to be woven with the base code, SAFE tool could be used to

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 129

discover the exception interfaces of classes (specially the runtime exceptions

which are not defined on class methods signatures) to be composed with the

basecode. However, in this chapter we focus on the development of aspects, and

the impact of aspect weaving on the exceptional behavior of the system. In the

following sections, we exemplify how our approach can be used to assure the

quality of the exception handling code in real implementation scenarios involving

application and library aspects.

6.4.
Worked Example

To illustrate our approach, we selected two real change scenarios to be

applied to the first AO version of Health Watcher (HW) system (Soares, 2004;

Greenwood et al., 2007) – the Web-based information system described in

Chapter 3. The change scenarios are: (1) to monitor the performance of http

requests, and (2) add the transaction management support to the persistence

operations.

A common strategy for monitoring an application is to include

instrumentation code around system operations. However, this approach requires

scattering duplicate code in many places of the source code, which can be tedious,

error-prone, and quite difficult to maintain. In our case study, we reused the

Glassbox Inspector (Bodkin, 2005), an aspect monitoring library, in order to

implement the monitoring concern in the HW system. In our case study, the

transaction management concern – which is also a typical crosscutting concern -

was also implemented using an aspect library. We reused the transaction

management aspect library built on top of Hibernate
36

 (Colyer, 2004), an open

source object relational mapping tool for a Java, to implement this concern.

Figure 28 illustrates the architecture of HW system after composing it with

the aspect libraries described before (i.e., the Monitoring Aspect Library, and the

Hibernate Aspect Library).

36
 http://www.hibernate.org

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 130

HealthWatcherFacade

ComplaintDAOImpl

Complaint

IEmployeeDAO

EmployeeDAOImpl

ServletInsertEmployee

Employee
Business Layer

GUI Layer

HibernateSessionManager HibernateDAO
HibernateExceptionManager

<<aspect>>
<<aspect>>

HibernateSessionManagerHW
<<aspect>>

IComplaintDAOPersistence Layer

ServletSearchComplaintData

Monitoring Aspect Library

ServletRequestMonitor
<<aspect>>

ErrorContainment
<<aspect>>

<<crosscuts>>

<<crosscuts>>

<<declare parents>>

Trace Aspect
<<aspect>>

<<crosscuts>>

Hibernate Aspect Library

Performance Monitoring

Transaction Management

Crosscutting Concerns:

<<crosscuts>>

Exception Handling for Aspect Libraries

SpecificErrorIsolation
<<aspect>> HibernateExceptionHandling

<<aspect>>

<<crosscuts>>

M

M

M

M

T

ST

Exception Handling f0r Aspect LibrariesH

H H

S

<<crosscuts>>

<<crosscuts>>

T

HealthWatcherFacade

ComplaintDAOImpl

Complaint

IEmployeeDAO

EmployeeDAOImpl

ServletInsertEmployee

Employee
Business Layer

GUI Layer

HibernateSessionManager HibernateDAO
HibernateExceptionManager

<<aspect>>
<<aspect>>

HibernateSessionManagerHW
<<aspect>>

IComplaintDAOPersistence Layer

ServletSearchComplaintData

Monitoring Aspect Library

ServletRequestMonitor
<<aspect>>

ErrorContainment
<<aspect>>

<<crosscuts>>

<<crosscuts>>

<<declare parents>>

Trace Aspect
<<aspect>>

<<crosscuts>>

Hibernate Aspect Library

Performance Monitoring

Transaction Management

Crosscutting Concerns:

<<crosscuts>>

Exception Handling for Aspect Libraries

SpecificErrorIsolation
<<aspect>> HibernateExceptionHandling

<<aspect>>

<<crosscuts>>

M

M

M

M

T

ST

Exception Handling f0r Aspect LibrariesH

H H

S

<<crosscuts>>

<<crosscuts>>

TT

Figure 28. The extended architecture of Health Watcher system.

As presented in Chapter 3, the HW system also contains a set of application

aspects that implement crosscutting concerns such as: concurrency control,

persistence (partially) and exception handling (partially). For the sake of

simplicity, however, Figure 28 focuses on the crosscutting concerns implemented

in this case study and omits the others. The HW elements presented in Figure 28

will be detailed on the next subsections which describe the approach’s steps. Each

step aims at assuring that the aspects integrated with the base code will not

threaten the application robustness in the presence of exceptions.

6.4.1.
Discover the Exception Interfaces of Aspects

The first step of our approach is to discover the exception interfaces of every

aspect advice that affect the base code in each change scenario. In our case study,

the aspects that intercept the base code are:

(i) ServletRequestMonitor – a library aspect that directly intercepts every

application request operation (see Figure 28); and

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 131

(ii) HibernateSessionManagerHW – an application aspect that extends the

HibernateSessionManager abstract library aspect in order to specify the

join points in the base code that needs to be intercepted to demarcate a

system transaction (see Figure 28).

The SAFE tool recursively analyzes the woven bytecode and calculates the

exception interface of every aspect advice (analyzing every method called from

them and every advice that may intercept them). Listings 20 and 21 illustrate the

partial code of the ServletRequestMonitor and HibernateSession-

ManagerHW and the exception interfaces reported by SAFE for some advices
37

.

1. public aspect ServletRequestMonitor {

2.

3. //Intercepts every servlet request operation

4. public pointcut servletRequestExec():

5. within(HttpServlet+) &&

6. (execution(* HttpServlet.do*(..)) ||

7. execution(*HttpServlet.service(..)))…;

8.

9. after() returning:monitorEndAllCases() {

10. …

11. Response response = responseFactory.getLastResponse();

12. if (response != null) {

13. response.complete();

14. } else {

15. logError("Monitoring problem: " +

16. "mismatched monitor calls");

17. }

18. }

19. …

20. }

Aspect: ServletRequestMonitor

Advice Type: after returning

Sequence: 01

Advice Method Signature:

glassbox.monitor.ui.ServletRequestMonitor: void ajc$afterRetu

rning$glassbox_monitor_ui_ServletRequestMonitor$4$9166ad69(…)

Exception Interface: org.aspectj.lang.SoftException

37
 Some parameters are omitted for readability

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 132

Listing.20. The Partial code of ServletRequestMonitor and the exception

interface of the after returning advice.

1. public aspect HibernateSessionManagerHW

2. extends HibernateSessionManager {

3. …

4. //Intercepts every DAO operation

5. Object around() : operationDAO() {

6. …

7. Transaction tx = null;

8. try {

9. tx = session.beginTransaction();

10. ret = proceed();

11. tx.commit();

12. } catch(HibernateException ex) {

13. if (tx != null) tx.rollback();

14. throw getHibernateExceptionManager()

15. .createDomainException(ex);

16. } finally {

17. session.close();

18. }

19. return ret;

20. }

21. …

22. }

Aspect: HibernateSessionManagerHW

Advice Type: around

Sequence: 01

Advice Method Signature:

hibernate.HibernateSessionManagerHW: Object ajc$around$hiber

nate_HibernateSessionManagerHW1a506ba1(…)

Exception Interface: org.aspectj.lang.SoftException

Listing.21. Partial code of HibernateSessionManagerHW and the exception

interface of the around advice.

As detailed in Chapter 5 the SAFE tool runs on the woven bytecode. When

building the woven bytecode, the AspectJ weaver converts every aspect into a

standard Java class (called aspect class), and each piece of advice into a public

non-static method in the aspect class whose signature is automatically generated

(see Chapter 5, Section 5.1.1). In the Listings above the “Advice Method

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 133

Signature” contains the automatically generated method signatures for the

advices presented above. “Sequence” specifies the order in which the advice was

defined on the bytecode.

At this step, the developer may optionally investigate the causes of the

exceptions that flow from each aspect advice - since this information is also

calculated by the SAFE tool during the exception-flow analysis
38

. Table 13 below

presents the causes of the org.aspectj.lang.SoftException, which may be

thrown by the after returning advice defined on the ServletRequestMonitor

aspect.

We can observe from Table 13 that the

org.aspectj.lang.SoftException may be caused by three different exceptions

that are softenized (i.e., handled, wrapped in a SoftException and then re-

thrown). The information presented in this table exemplifies how complex it can

be to try to reason about the flow of exceptions without a tool support. A similar

analysis can be performed to find out the possible causes of SoftException that

can flow from the Hibernate aspect library.

Original Exception

Exception Path before it is Softened

java.lang.IllegalArgumentException (Signaler)<glassbox.debug.TraceAdvice: void ajc$afterThro

wing$ glassbox_debug_TraceAdvice$3$4c73158c(…)>

(Handler)<glassbox.monitor.ui.ServletRequestMonitor: void

ajc$ afterReturning$glassbox_monitor_ui_ServletRequestMonitor

$4$9166ad69(…)>

(Action) net.sf.hibernate.LazyInitializationException captured

by java.lang.Exception (Converted to SoftException)

Net.sf.hibernate.LazyInitializationException (Signaler)<glassbox.debug.TraceAdvice: void ajc$afterThr

owing$glassb ox_debug_TraceAdvice$3$4c73158c(…)>

(Handler)<glassbox.monitor.ui.ServletRequestMonitor: void

ajc$ afterReturning$glassbox_monitor_ui_ServletRequestMonitor

$4$9166ad69(…)>

(Action) net.sf.hibernate.LazyInitializationException captured

by java.lang.Exception (Converted to SoftException)

java.net.SocketException (Signaler)<glassbox.debug.TraceAdvice: void ajc$afterThr

owing$glassbox_debug_TraceAdvice$3$4c73158c(…)>

38
 The information presented on tables was extracted from the SAFE tool output, which can be

presented in two formats: XML and .xls (Microsoft Excel) files.

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 134

(Handler)<glassbox.monitor.ui.ServletRequestMonitor: void

ajc$ afterReturning$glassbox_monitor_ui_ServletRequestMonitor

$4$9166ad69(…)>

(Action) Subsumption: java.net.SocketException captured by

java.lang.Exception (Converted to SoftException)

Table 13. Exception paths calculated by SAFE tool.

Since the SAFE tool is based on the static analysis of Java bytecode, the

information presented in Table 13 are not user friendly since it presents the

automatically generated method signatures for each aspect advice. On the other

hand, then advantage of working on Java bytecode instead of the AspectJ source

code is that we can incorporate in our analysis the exceptions that flow from

aspect libraries and OO libraries (see Section 6.6).

6.4.2.
Specify the Exception Handling Contracts

After discovering the exception interfaces of every aspect advice that affect the

base code, we need to define the elements that should be responsible for handling

them. In our approach, such information is represented in terms of a set of

exception handling contracts. Listing 22 illustrates the exception handling

contracts defined (i) to the instance of SoftException thrown by the after

returning advice presented above, and (ii) to one advice of the

HibernateSessionManagerHW aspect that may throw HibernateException.

The <signaler> and <handler> elements contain an expression (similar to a

pointcut expression) that will match the methods signature responsible,

respectively, for signaling and handling the exceptions.

1. <contract id=1 description=”Glassbox Contract”>

2. <exception type=”org.aspectj.lang.SoftException”>

3. <signaler signature=”glassbox.monitor.ui.

 ServletRequestMonitor.*”/>

4. <handler signature=”hw.handling.ErrorIsolation”

5. type=”same_exception”/>

6. </exception>

7. </contract>

8. <contract id=2 description=”Hibernate Contract”>

9. <exception type=”org.aspectj.lang.SoftException”>

10. <signaler signature=”HibernateSessionManagerHW.*” />

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 135

11. <handler signature=”hw.handling.HibernateException

12. Handling.*” type=”same_exception”/>

13. </exception>

14. </contract>

 Listing.22. Exception Handling Contracts.

The first contract (id=1) defines that the ErrorIsolation aspect should

handle any instance of SoftException signaled by any advice defined on the

ServletRequestMonitor class. The second contract (id=2) states that the

HibernateExceptionHandling aspect is responsible for handling instances of

SoftException signaled by any advice defined on the

HibernateSessionManagerHW aspect
39
. Moreover, both contracts state that

such exceptions should be caught by a catch clause whose argument is of the

same type as the exception being caught (lines 5 and 12).

Each handler defined on the contracts above implements a different

exception handling policy (see Section 4): the hw.handling.ErrorIsolation is

based on Error-isolation, and hw.handling.HibernateException is based on

App-specific error handling. The developer does not want exceptions that escape

from the Monitoring Aspect Library to affect the application normal control flow

(see Figure 28). On the other hand, if an exception occurs during data persistence

(that relies on the transaction concern), the developer wants to notify that the

requested transaction could not be performed. The exception thrown by the

Hibernate Aspect Library should flow until the GUI layer, and each servlet should

then handle the SoftException and present a proper error message to the user

(see Figure 28).

39
 As illustrated in Section 5 the around advice has a different representation on the woven

bytecode when compared to the before and after advices. The around advice is represented by a

static method on the affected class. Therefore, the exception handling contract is not only checked

besed on the string matching between the information specified on the contract and the advice

method signature on the woven bytecode.

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 136

6.4.3.
Implement Exception Handling Code

 At this step the exception handler aspects specified on the contracts defined

above should be implemented. Listing 23 illustrates the partial code of

ErrorIsolation aspect.

1. public aspect ErrorIsolation {

2. …

3. public pointcut scope() :

4. within(ServletRequestMonitor);

5.

6. void around():adviceexecution() && scope()){

7. try {

8. proceed();

9. } catch (SoftException e) {

10. log(e);

11. }

12. }

13. }

 Listing 23. Code snippet for the ErrorIsolation aspect.

In order to isolate the exception that flows from the monitoring aspect

library, the exception handling aspect (ErrorIsolation in Figure 28) needs to

directly intercept the aspect library bytecode
40

. Doing so, the ErrorIsolation

aspect prevents the monitoring exception from affecting the flow of execution of

the application.

Similarly, the HibernateExceptionHandler aspect is implemented to

handle the exceptions thrown by Hibernate Aspect Library. This aspect intercepts

the base code, more specifically the doGet(..) and doPost(..) methods, using

an around advice. This aspect handles the HibernateException and presents a

specific error message to the user. Listing 24 illustrates the partial code of

HibernateExceptionHandler aspect.

1. public aspect HibernateExceptionHandler {

2.

3. public pointcut scope():

40 Since version 1.2, AspectJ allows the weaving of aspects into bytecode (that may contain woven

aspects) by using inpath compile option.

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 137

4. within(hw.gui.* && HttpServlet+) &&

5. (execution(* HttpServlet.do*(..)) ||

6. execution(* HttpServlet.service(..)));

7.

8. void around():scope()){

9. try {

10. proceed();

11. } catch (SoftException e) {

12. presentUserMessage(e);

13. }

14. }

 Listing 24. Code snippet for the HibernateExceptionHandler aspect.

6.4.4.
Calculate Exception Paths

In order to assure that the exception handling solutions are correctly

implemented, we use the SAFE tool to compute the exception paths for the

exceptions signaled by the monitoring and the transaction management

crosscutting functionalities. Listing 25 illustrates some of the exception paths

computed by the SAFE tool
41

. Besides calculating the exception paths, the SAFE

tool also checks whether they obey the exception handling contracts defined at the

previous step. The automatic checking of exception handling contracts is useful

when many exception paths should be analyzed. During the exception handling

contract verification on the exception paths, we can observe that the

SoftException is not handled by the element specified in the contract (see

Listing 25).

Exception: org.aspectj.lang.SoftException

Exception Path:

 (Signaler)<ServletRequestMonitor: ajc$afterReturning…(…)>

 (Intermediate)<ErrorIsolation: void ajc$around$proceed…(…)>

 (Handler)<ErrorContainment: ajc$around$ErrorIsolation…(…)>

 (Action)org.aspectj.lang.SoftException capured by

 org.aspectj.lang.SoftException

Contracts: Glassbox Contract (id:1) obeyed

Exception: org.aspectj.lang.SoftException

41

 We omit package names, return types and advice IDs for simplicity.

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 138

Exception Path:

 (Signaler)<ComplaintRepositoryRDB: search_aroundBody1$advice(…)>

 (Intermediate)<ComplaintRepositoryRDB: search (…)>

 (Handler)<HealthWatcherFacade: searchComplaint (…)>

 (Action)org.aspectj.lang.SoftException capured by java.lang. Exception

Contracts: Hibernate Contract (id:2) broken

Exception: org.aspectj.lang.SoftException

Exception Path:

 (Signaler)<EmployeeRepositoryRDB: search_around Body1$advice(…)>

 (Intermediate)<EmployeeRepositoryRDB: search (…)>

 (Handler)<HealthWatcherFacade: Object searchEmplyee(…)>

 (Action)org.aspectj.lang.SoftException capured by java.lang. Exception

 Contracts: Hibernate Contract (id:2) broken

 Listing 25. List of Exception Handling Contracts.

Besides calculating the exception paths, the SAFE tool also checks whether

they obey the exception handling contracts defined at the previous step. During

the exception handling contract verification on the exception paths, we can

observe that the org.aspectj.lang.SoftException is not handled by the

element specified in the contract (see Listing 22).

6.4.5.
Manually Inspect the Exception Handling Code

During code inspection, we observed that the instance of SoftException

that can
42

 be signaled by HibernateExceptionHandler is mistakenly handled by

a “catch all” clause defined on the system Facade (see HealthWatcherFachade

class in Figure 4) - before it can reach the join point intercepted by the handler

aspect (HybernateExceptionHandler) presented in Listing 24.

This kind of problem could not be anticipated, during the development of

HybernateExceptionHandler and was only discovered by the SAFE tool. One

way of solving this broken exception handling contract is to replace the “catch

all” clause defined in the Facade element by specific catch clauses (one per

exception handled at this point). Doing so, the Hibernate exception will flow until

42
 This exception can be signaled in some circunstances according to the static analysis

information.

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 139

it reaches the join points intercepted by the exception handling aspect in the GUI

layer.

This manual inspection step was performed on the empirical study presented

in Chapter 3, in order to diagnose specific exception handling failures such as the

causes the incorrect user message (i.e., the catch clause handled the exception

and presents a message to the user that is not related to the failure that happened)

detailed in Chapter 3, Section 3.1.4.

6.5.
The Approach’s Effectiveness x the SAFE Tool’s Precision

As detailed in Sections 6.3 and 6.4 most of the approach’s steps depend on

the information computed by the SAFE tool. For this reason, the approach’s

effectiveness is strongly related to the precision of the tool output. During the

implementation of the exception-flow static analysis algorithm of SAFE, we had

to deal with a number of implementation trade-offs (detailed in Chapter 5) to

balance between the tool’s usefulness and the precision, such as:

Flow-Insensitive Analysis. In SAFE the exception interfaces of methods

comprises the set of exception signaled (directly through the throw statement or

indirectly through method calls) and not handled inside the method. The analysis

performed by SAFE to discover the exception interfaces does not take into

account contextual information - which could establish that a specific exception

cannot actually be thrown at runtime. For instance, the method nextElement()

defined in java.util.Enumeration class (Gosling et al., 1996) may signal

NoSuchElementException if no element is found on the Enumeration.

However, if a call to this method is guarded by a call to hasMoreElements()

method (which returns false in case there is no element in the enumeration), the

instance of NoSuchElementException will never be signaled in runtime. Though

a context-sensitive analysis could yield more precision, but its cost needs to be

further investigated.

The implementation tradeoffs together with the inherent limitations of any

static analysis represent the sources of imprecision to the exception analysis

algorithm, which can lead to exception paths that can never occur in runtime

(spurious paths). Unfeasible paths are a common problem in every static analysis,

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 140

and can be addressed by: (i) human examination - to identify spurious paths

during manual inspections; and (ii) the definition of new techniques to

automatically remove as many spurious links as possible
43

.

In our approach, the spurious exception paths were identified during the

manual inspections of the exception handling code - guided by the exception paths

reported by the SAFE tool - and then skipped. Table 14 presents the results of

applying the SAFE tool to find the exception paths of the AO versions of Health

Watcher, Mobile Photo and JHotdraw systems
44

 - collected during the empirical

study presented in Chapter 3.

System Reported Spurious Category 1 Category 2

Health Watcher AO v1 212 0 0 0

Health Watcher AO v9 338 0 0 0

Mobile Photo AO v4 117 11 0 11

Mobile Photo AO v6 132 18 0 18

AJHotDraw 281 37 37 0

Table 14. Reported and spurious exception paths.

The first column lists the system considered, the column 2 lists the number

of reported exception paths, the column 4 lists the spurious exception paths that

were detected during manual inspections, the column 5 lists the number of

spurious exception paths that can be detected using a context-sensitive call graph

construction algorithm (Category 1) and column 5 contains the number of

spurious exception paths can be removed by a more precise analysis (Category 2).

The number spurious exception paths found in this study is sufficiently low

to make the SAFE tool useful in practice. A detailed look at these spurious

exception paths reveals the reasons why they occur and tell us how we can

improve the SAFE tool
45

. The spurious exception paths found in Mobile Photo

were caused after throwing advice that unconditionally threw an exception -

overriding the exception previously thrown by the advised code. Listing 26

43 Some unfeasible paths, however, cannot be automatically removed due to intrinsic limitations of

static analysis.
44

 The information presented in this table does not include the exception paths that originated to

libraries to which we did not have access to the source code.
45 We believe that the same behaviour will happen in other AO systems, since the set of target

systems studied englobes the different ways of handling exceptions using aspects as described in

Chapter 3. However further studies still need to be performed to assure this idea.

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 141

presents the after throwing advice code, and Listing 27 illustrates the effect of

this advice on the woven bytecode.

after(String mediaFile) throwing(Exception e) throws

 ImagePathNotValidException:readMediaAsByteArray(mediaFile){

 throw new ImagePathNotValidException(

 "Path not valid for this image:"+mediaFile);

}

 Listing 26. Code snippet for an after throwing advice.

1. public void method() throws Exception{

2. try{

3. //original method body

4. ...

5. } catch(Exception t){

6. <AspectID>.aspectOf().ajc$afterThrowing$<Id>(…);

7. throw t;

8. }

 Listing 27. Effect of the after throwing advice on the woven bytecode.

 We can observe that the exception path that starts in line 7 of the code

snippet presented in Listing 27, can never happen in runtime because the after

throwing advice unconditionally
46

 throws an instance of

ImagePathNotValidException, and consequently, the statement defined in line

7 will never be executed. We believe that detecting statements that

unconditionally throws exceptions during the exception analysis would improve

the tool precision in such scenarios.

The GUI layer of AJHotdraw system is based on the definition of a set of

GUI components that inherits from the same abstract class and overrides some of

its methods. Listing 28 illustrates exception paths that include method calls

defined in GUI components. Some exception paths share the same method name

(i.e., mouseDown()) – represented in bold in the listing below.

org.jhotdraw.standard.AbstractFigure.clone()

org.jhotdraw.contrib.GraphicalCompositeFigure.clone()

org.jhotdraw.standard.CreationTool.createFigure()

org.jhotdraw.standard.CreationTool.mouseDown()

org.jhotdraw.figures.TextTool.mouseDown()

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 142

org.jhotdraw.figures.ConnectedTextTool.mouseDown()

org.jhotdraw.util.UndoableTool.mouseDown()

org.jhotdraw.standard.SelectionTool.mouseDown()

org.jhotdraw.samples.javadraw.MySelectionTool.mouseDown()

org.jhotdraw.standard.StandardDrawingView$DrawingViewMouseListener.

mousePressed()

 Listing 28. List of method calls composing an exception path.

The partial code of CreationTool.mouseDown() is illustrated below. We

can observe that this method does not directly calls the TextTool.mouseDown()

– there is no instance of TextTool class in the scope of the method. This method

only calls the method mouseDown() defined the superclass which is the same

superclass of TextTool.

//Creates a new figure by cloning the prototype.

public void mouseDown(MouseEvent e, int x, int y) {

 super.mouseDown(e, x, y);

 setCreatedFigure(createFigure());

 ...

 }

Listing 29. Code snippet of CreationTool.mouseDown() method.

These spurious paths were, therefore, caused by the imprecision of the

underlying call graph builder module that uses the context-insensitive points-to

algorithm available in SPARK framework. Studies have reported that the use of

Data-Reachability and context-sensitive analysis algorithms can improve the

precision of the call graph and consequently of the exception paths calculated

when traversing it (Liang et al., 2005; Fu and Ryder, 2007). Such algorithms

would check the values stored in program values, to decide, for instance, which

methods could be called, when a method defined in a supertype is called.

6.6.Discussions and Lessons Learned

This section provides further discussion of issues and lessons we have

learned while reusing aspect libraries and adopting our reuse approach in different

scenarios.

46 There is no if clause guarding the exception thrown by the after throwing advice.

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 143

Static analysis x Testing Exceptional Conditions. Our approach relied on

static analysis in order to discover which exceptions may flow from aspect

libraries. To discover such exceptions we could alternatively write integration

tests to verify whether library aspects affect the application code as expected

under exceptional conditions. However, the test of exceptional conditions is

inherently difficult, due to the huge number of possible exceptional conditions to

simulate in a system and the difficulty associated with the simulation of most of

such scenarios (Bruntink et al., 2006).

Using Stubs. Before performing the static analysis, the SAFE tool requires

the aspect library to be combined with a base code. Since aspects are intrinsically

related to the concerns they affect. The same restriction is present in automated

testing approaches for aspects (Lopes and Ngo, 2005; Xie and Zhao, 2006). Thus,

if the developer wants to apply this approach before the base code is implemented,

“stub implementations” should be provided to every advised method.

Load-time weaving. As mentioned before, some aspect libraries can be

reused in load-time. However, in order to assure that the aspect library reused at

load-time will not impair system robustness, it is fundamental to prepare their

code beforehand for the exceptions that may flow from aspect libraries in runtime.

This can be accomplished by combining the library aspects and the application

code at compilation time and then adopting the approach proposed here.

Documentation of Aspect Libraries. Current aspect libraries neither

explicitly document which aspects will affect the base code, nor the exceptions

that may flow from library advices that affects the base code. As we have

discussed in this thesis, such information is very useful when developing robust

systems: the developer wants to make sure that a piece of third party code will not

threaten the robustness of the application (exceptional scenarios). The SAFE tool

can also be used to automatically generate the exceptional interfaces of aspect

libraries helping to document them.

Aspect-library Development. The case study presented in this chapter

focused on the reuse of aspect libraries, but we could observe that some

approach’s steps could be useful when the developer implements her/his own

application aspects and aspect libraries. Using a similar approach the aspect

library developer could isolate the base code from exceptions that may flow from

library code.

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 144

Static Analysis based on Java bytecode. The SAFE tool is based on the

static analysis of Java bytecode. Then advantage of working on Java bytecode

instead of the AspectJ source code is that we can incorporate in our analysis the

exceptions that flow from aspect libraries and OO libraries. On the other hand the

SAFE tool output that the results of the bytecode static analysis, is not , such

automatically generated method signatures are presented to SAFE users. We are

currently devising a strategy to map the advice representation on the bytecode to

its representation on the source code. This will make the tool output more user-

friendly.

Dependence on the User Input. The user needs to specify a set of

information to be used by the SAFE tool during the analysis: (i) the application

packages (see Chapter 5, Section 5.3.2.1), and the (ii) exception handling

contracts. The SAFE tool relies on this information to classify the exception paths

according to its Signaler-Handler relationship, and find out the broken exception

handling contracts respectively. If the user fails to specify a relevant application

package, SAFE may report a wrong exception path classification and

consequently wrong Signaler-Handler relationships. If the user fails to define the

exception handling contracts (e.g., specify a wrong contract), the tool may report a

wrong broken contract. In cases where the user forgets to specify an exception

handling contract, the contract violation will not be automatically reported by the

tool, but can be eventually discovered during manual inspection of the exception

handling code.

6.7.Summary

This chapter presents an approach, supported by SAFE tool, which aims at

assisting the developer when checking the reliability of the exception handling

code of AO applications. Such applications may contain application aspects

and/or library aspects – a new reuse artifact available nowadays. This approach

supports the reasoning about the exceptions that can flow from aspects; and

provides brief guidelines to the developer of how such exceptions should be

handled.

The limitations of this approach are strictly related with the limitations of

the static analysis tool that supports it. During the implementation of SAFE we

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 145

had to deal with a set of trade offs that involved the tool precision, the processing

cost and the usefulness of the information provided by it. Therefore, due to some

implementation decisions the SAFE tool may report false broken exception

handling contracts.

However, the number of false broken contracts found in the case study

presented in this chapter was sufficiently low assuring that the SAFE tool is in

fact useful in practice. Moreover, the false broken contracts can be are easily

identified during the manual inspections of the exception handling code guided by

the exception paths reported by the SAFE tool (one of the approach’s steps).

The analysis of the broken contracts, revealed the reasons why they occur

and identified where we can improve the tool. The exception-flow analysis

implemented by SAFE can be improved by using contextual information (Liang et

al., 2005) or Data-Reachability algorithms (Fu and Ryder, 2007). Both would

reduce the number of false broken contracts reported by the analysis.

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

