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6 
The Approach  

In Chapter 2 we mentioned that the exception handling code is often the 

least well understood (Sinha and Harrold, 1998; Robillard and Murphy, 2000; 

Robillard and Murphy, 2003) and tested (Sinha and Harrold, 1999; Fu and Ryder, 

2005) part of the system. Since it is not the primary concern to be implemented, it 

does not receive much attention during system design, implementation and test 

phases. Moreover, testing the exception handling code is inherently difficult. 

Firstly, because it is tricky to simulate some exceptional conditions during tests 

(e.g., network problems). Secondly, because the large number of different 

exceptions that can happen in a system in runtime may lead to test-case explosion 

problem (Hanenberg et al., 2003).  

The lack of verification approaches for the exception handling code of AO 

systems and the difficulties mentioned above – related to the exception handling 

code testing - stimulated the present work. This chapter presents a verification 

approach based on static analysis, to check the reliability of the exception 

handling code of AO applications. This approach is based on SAFE, the 

exception-flow analysis tool presented on the previous chapter. SAFE is used in 

this approach to help developers to reason about the exception flow and find bugs 

on the exception handling code of AO applications developed in AspectJ.  

 

6.1. 
Checking the Reliability of Exception Handling Code  

The goal of the proposed approach is to help developers to prevent the 

exceptions signaled or handled by aspects from threatening the robustness of the 

application they are composed to. As illustrated in Figure 24, the aspects that 

compose an AO application may be of two kinds: application aspects and library 

aspects.  
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Figure 24. Types of aspects in an AO application. 

  

The application aspects are developed in the application core, and may (i) 

implement a crosscutting concern by their own, (ii) integrate existing 

functionalities of the base code, or (iii) integrate the base code with functionalities 

available in OO libraries (see scenario 1 in Figure 24).  The library aspects are 

pre-compiled aspects, implemented by third party developers, that implement 

traditional crosscutting concerns (i.e., performance monitoring, security, and 

transaction management) that would be spread in many application modules 

otherwise (Bodkin, 2006). Reusing an aspect library often means: (i) extending an 

abstract aspect with a concrete aspect that redefines the points on the application 

where the aspect should apply (see scenario 3 in Figure 24); or (ii) using declare 

parents AspectJ construct
28

 to add a tag interfaces (Colyer, 2004) to some of the 

elements in the application (see scenario 2 in Figure 24) – which will identify 

which elements will be intercepted by the library aspects.  

In this chapter we focus on the robustness and consistency issues pertaining 

to exceptional flow of programs using such aspect libraries or application 

aspects. When developing application aspects and reusing library aspects in 

exception-aware applications, the AO developer faces common difficulties. As 

mentioned on previous chapters, when an aspect adds a new functionality to a 

                                                

28
  The declare parents AspectJ construct enables the developer to change the type 

hierarchy of a system. 
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system, this additional functionality can also bring new exceptions (e.g., access of 

null references, a noisy user input or faults on underlying middleware or 

hardware). Consequently, even simple aspects used for logging or monitoring 

(Coelho et al., 2006b) purposes, for instance, may throw exceptions that will flow 

through the system. If not adequately handled such exceptions may remain 

uncaught or may be handled by an existing handler on the base code (i.e., 

unintended handler action (Miller and Tripathi, 1997)). 

 One may argue that such problems also occur in OO development: we do 

not know which runtime exceptions that may flow from OO code as well and, 

consequently, cannot prepare the code to deal with them. Indeed, this is a real 

problem in OO development, and some static analysis tools, e.g., as proposed in  

(Robillard and Murphy, 2003; Fu et al., 2005), could be used to deal with it. 

However, some characteristics of aspect-oriented compositions strengthens these 

problems, such as: (i) the ability to externally modify the behavior of the base 

code (Krishnamurthi et al., 2004; Aldrich, 2005), (ii) some developers and 

approaches advocating an oblivious development process (Filman and Friedman, 

2005), (iii) the load-time weaving (Colyer, 2004; Bodkin, 2005; Bodkin, 2006) 

available in some AO languages, (iv) and the quantification property (Filman and 

Friedman, 2005) (as detailed in Section 6.1.1). 

Therefore, while aspect-oriented compositions allow the development and 

reuse of crosscutting concerns, they might render less useful if they introduce new 

exceptions that may lead to potential faults. Currently, there is no approach or 

supporting tool
29

 to help application developers to: (i) discover which exceptions 

may flow from an application aspect or a library aspect, (ii) prepare the code to 

deal with them; or (iii) check whether such exceptions were adequately handled. 

Such approach would reduce or altogether avoid the threats, posed by application 

aspects and especially third party aspects (from aspect libraries), to applications 

robustness in exceptional scenarios.  

This chapter focuses on the exceptions that may flow from aspects, the 

consequences that they may bear, and how to deal with them. The main questions 

we seek to address here are the following: 

                                                

29 The static analysis tools that find exception paths in OO programs cannot be used in a 

straightforward fashion in AO programs, because they cannot interpret the effects on bytecode 

after the aspect weaving process. 
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• What are the potential consequences of developing or reusing aspects 

that may throw exceptions?  

• How can one reduce the number of potential faults associated with 

them?  

We believe the answers to these questions are of interest to a broad 

audience, due to the increasing number of AO developers. In the following 

sections we firstly discuss about challenges associated with aspect reuse in the 

presence of exceptions and detail the relatively new concept of aspect libraries. 

Then we present a verification approach based on static analysis that allows 

programmers to statically look for bugs on the exception handling code of aspect-

oriented development systems. This verification approach takes into account 

exceptional situations neglected by the verification approaches for AO programs 

proposed so far.  Section 6.3 shows how SAFE tool can be used to support some 

steps of the approach. Section 6.4 summarizes our experience when applying this 

approach to different aspect reuse and development scenarios. Section 6.5 

presents an analysis of the precision of the SAFE tool – since the approach’s 

effectiveness is strongly related to the precision of the tool output. And finally in 

Section 6.6 we provide further discussion of lessons learned.   

 

6.1.1. 
The Characteristics of AO Compositions x the Development of 
Exception-ware AO Systems 

Some characteristics of aspect-oriented development strengthens existing 

kinds of failure (e.g., uncaught exceptions, unintended handler action) on OO 

development concerning the way exceptions are handled and thrown inside the 

system. The modification (Krishnamurthi et al., 2004; Aldrich, 2005) performed 

by aspects works by reverse, also known as the inversion of control: the aspect 

declares which classes it should affect rather than vice-versa. This means that 

adding and removing aspects from a system most often
30

 does not require editing 

the affected class definitions. Consequently, when (re-)using aspects we cannot 

easily protect the advised code from the exceptions that may flow from them. 

Figure 25 illustrates a before advice that intercepts an application method and 

                                                

30
  When intertype declararions are used some editing may be necessary. 
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throws an exception. This exception will flow through the base code and 

interrupting the normal control flow of the advised code. In OO system 

development we can simply add a try-catch block surrounding the reused piece 

of code to avoid exceptions from flowing from it and affecting the normal 

application control flow. On the other hand, on the AO system presented in Figure 

25, since the pointcut language available in most AO languages does not allow the 

developer to intercept the execution of the specific before advice that threw the 

exception, the AO developer cannot to avoid the exceptions (thrown by the 

before advice) from flowing though the system. 

    

before advice method (inner structure)

methodexception

Legend:

system layer

GUI

Business

BD

Advised application
call graph

advise method

ExEx

statement

 

Figure 25. Consequences of aspectual modifications on the base code 

 

Moreover, some AO development approaches rely on the obliviousness 

property (Filman and Friedman, 2005). According to it the developer of the base 

code does not need to know that the code will be affected by aspects. As a 

consequence, the application developer cannot prepare the code to deal with 

exceptions that may escape from aspects. Even if the aspect developer creates an 

aspect responsible for handling the exceptions thrown by crosscutting concerns, 

the AO developer cannot assure that this exception will not be mistakenly handled 

by a catch clause on the base code (see Inactive Handler Aspect in Chapter 4). 

Third, some AO languages enable load-time weaving. The class loader reads 

a configuration file that specifies the aspects to be woven when applications are 

loaded. Thus, the developer only needs to deploy the aspect bytecode together 

with the application to be advised. This is the scenario that occurs most often 

when aspect libraries are reused. Not having access to the source code of 
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imported aspects also has its drawbacks: the impact of aspects on the exceptional 

flow of applications is only discovered at runtime.  

Last but not least, AO development is often based on the quantification 

property which refers to the desire of programmers to write programming 

statements with the following form: “In programs P, whenever condition C arises, 

perform action A”. As a result aspects have the ability to affect semantically 

unrelated points in the code. Therefore, when a new exception is introduced by an 

aspect in an application, new handlers should be defined in different places within 

the base code (one for each path in the call graph that may reach the affected 

method – see Figure 26). Even if the AO developer creates specific exception 

handling aspects (Filho et al., 2007)) for handling the new exceptions, the s/he 

cannot assure that such exception will not be mistakenly handled by a catch clause 

on the base code (see Inactive Handler Aspect in Chapter 4). Moreover, since the 

way the exception should be handled o these points may differ, one exception 

handling aspect per exception would not be sufficient. 

 

GUI

Business

BD

GUI

Business

BD

unaffected methodmethod possibly affected by a new exception

Legend:

system layer advised method

Advised application
call graph

Application call graph

 

Figure 26. Consequences of quantification property in the presence of 

exceptions. 

Since the exception handling policy
31

 (Robillard and Murphy, 2000) of an 

application is almost always based on its architecture, adding exceptions on 

unrelated points in the code may potentially break the exception handling policy. 

                                                

31 The exception handling policy comprises a set of design rules which defines the system 

elements responsible for signaling, handling and re-throwing the exceptions; and the system 

dependability relies on the obedience to such rules. 
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The combination of these characteristics, therefore, results in fault-prone 

exception handling scenarios in AO systems. 

 

6.2. 
Status of Current Aspect Libraries  

Although pre-built aspect libraries are a relatively new reuse artifact, several 

useful collections have already become available, including: the Spring AOP 

aspect library (Johnson, 2007), the Glassbox Inspector
32

, the JBoss Cache
33

, and 

GOF patterns aspect library
34

. Such libraries implement traditional crosscutting 

concerns (i.e., performance monitoring, security, and transaction management), 

and enable the developer to extend the functionalities of existing applications 

avoiding significant coupling and large re-investments (Bodkin, 2006).  

According to Bodkin (2006) “reuse will prove to be the most important benefit 

from adopting Aspect Oriented Programming.” 

While aspect libraries introduce new possibilities for application 

composition, the circumstances mentioned above (see Section 6.1.1) may threaten 

the application’s robustness and design consistency. Aspect libraries developers 

may do their best to ensure that libraries’ functions do not create faults that impact 

the applications in which they are composed. However, unexpected behavior in 

aspect library code (e.g., unanticipated null values, undocumented runtime 

exceptions thrown by libraries) is often present (Coelho et. al, 2008).  

In order to know which exceptions may flow from aspect libraries, 

programmers must rely on the libraries documentation - that is, more than often, 

neither complete nor precise. As a consequence, the developer may only realize 

the existence of unexpected exceptions thrown by an aspect library, by observing 

the failures caused by them on the application in runtime, such as: uncaught 

exceptions – which lead to unpredictable software crashes; and unintended 

handler actions – which lead to wrong recovery actions (e.g., wrong error 

messages presented to the user).  

The additional expense that is required to account for the effects of 

exception occurrences on aspect libraries may not be justified unless exceptions 

                                                

32
 https://glassbox-inspector.dev.java.net/ 

33
 http://labs.jboss.com/jbosscache/ 
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occur frequently in aspect libraries in practice. A recent study (Cabral and 

Marques, 2007) shows that the amount of code dedicated to exception occurrences 

(exception raising and handling) in OO libraries is approximately 7% of the total 

number of LOC. We conducted a similar study to determine the frequency with 

which aspect libraries use exception-related constructs. In this study, we examined 

the assets of aspect libraries from different sources, and obtained the information 

summarized in Table 12. In the observed subjects from 2,09% to 8,82% of the 

total lines of code were dedicated to exception raising and handling concerns (see 

LOC EH in Table 12).  

 

Aspect Libraries LOC LOC EH % LOC EH # try # catch # throw

GlassBox Inspector (monitor) 3621 90 2,49% 16 16 14

Spring AOP 98976 8731 8,82% 975 1105 1847

JBoss Cache 41582 870 2,09% 363 363 494  

Table 12. Characteristics of the exception handling (EH) code on aspect libraries. 

 

Furthermore, the addition of exception-related constructs in several main 

stream programming languages (e.g., Java, C++, .Net) attests the importance of 

exception handling mechanism in the development of current systems.  

 

6.3. 
The Verification Approach  

In this section, we present an approach to help AO developers to check the 

reliability of the exception handling code. When implementing application 

aspects or re-using library aspects (i.e., aspects developed by third party 

developers), the developer should account for the exceptional conditions that may 

arise from them. Otherwise, exceptions may cross aspects boundaries and impair 

the system’s integrity and robustness due to uncaught exceptions and unintended 

handler actions.  Figure 27 illustrates the main steps that compose our approach. 

 

                                                                                                                                 

34
 http://hannemann.pbwiki.com/Design+Patterns 
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Figure 27. The proposed approach. 

 

Much of the effort in our approach involves working out how to effectively 

integrate aspect into the base code without the risk of introducing the faults on the 

exception handling code – which may represent causes of potential software 

crashes. The verification approach presented here complements the available AO 

testing approaches that focus on the system normal control flow (Zhao, 2003; 

Alexander et al., 2004; Lopes and Ngo, 2005; Coelho et al., 2006a; Lemos et al., 

2006; Xie and Zhao, 2006; Xu and Xu, 2006; Lemos et al., 2007; Massicotte et 

al., 2007). These approaches perform unit and integration tests and looks for faults 

on the AO code (e.g., too general or too specific pointcuts, conflicting aspect 

interactions). These approaches neglect the exception handling code, firstly due to 

the difficulty of simulating exception occurrences during tests and, secondly, 

because the large number of possible exception can lead to a test case explosion 

problem, as mentioned before. 

The approach is based on SAFE tool, and comprises of the following steps, 

as illustrated in Figure 27: 
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1. Discover the Exception Interfaces of Aspects. In this step the SAFE tool is 

used to discover the list of exception types that may flow from each advice 

defined on application aspects or library aspects that crosscuts the base code. 

Since the SAFE tool works on the woven bytecode, at this step the aspect library 

needs to be combined (i.e., woven) with the base code. In case the elements to be 

affected by the aspect were not already implemented, a set of stubs may be 

defined and combined with the aspect to enable the analysis
35

. Moreover, once the 

exception interfaces of a set of aspects are discovered it can be reused along the 

development cycle (see Chapter 8, Section 8.3).  

 

2. Specify the Exception Handling Contracts. Once the exception 

interfaces of aspect advices have been discovered, the developer should specify 

which elements are responsible for handling them. In our approach, this 

information is represented as a set of exception handling contracts. As mentioned 

in Chapter 5, Section  5.3.4, the exception handling contracts specify the 

Signaler-Handler relation per exception thrown by aspects, and are specified in 

the SAFE tool in XML format.  

 

In case the application has already defined an exception policy, the 

exception handling contracts defined for aspect-signaled exceptions should be 

defined in accordance to it. The advantage of representing the exception handling 

contracts in a semi-structured way is that they can be used afterwards to partially 

automate the contract checking step. 
 

3. Implement the Exception Handling Code. In this step, the developer should 

implement exception handling solutions according to the specified contracts. 

Examples of exception handling solutions to be implemented in this step are: 
 

• Error isolation: This strategy avoids the exception signaled by an aspect 

from flowing to the client application. The handler can be defined in an 

exception handling aspect (i.e., as aspect defined to handled exceptions 

(Filho et al., 2007)) that directly intercepts library aspects or application 

aspects. Or in the case of application aspects for which the developer has 

                                                

35 Some approaches as the one proposed by Xie and Zhao (2006) automatically generate a set of 

stubs to be intercepted by aspects. 

 

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA



 128 

access to the source code, handlers should be defined on every advice 

method that signals an exception.  

• App-specific error handling: the developer can define an exception handling 

aspect that intercepts specific join points in the application code (handling 

on aspects), or define catch clauses inside application elements that will be 

responsible for handling the exceptions thrown by aspects (although this 

design practice is not advocated by most of the current AO development 

approaches). 

 

4. Calculate the Exception Paths. In this step, the SAFE tool analyses the 

bytecode of the advised application, and calculates the exception path of each 

exception that may be thrown by aspects. Notice that if there is no handler for a 

specific exception, the exception path starts from the signaler and finishes at the 

program entrance point. After the exception paths are calculated, if the exception 

handling contracts were defined on the structured way, the SAFE tool analyzes 

every exception path in order to discover whether the handling contracts, defined 

in Step 2, were obeyed by them.  
 

5. Manually Inspect the Exception Handling Code.  In this step the developer 

should inspect the exception handling code related to the broken exception 

handling contracts. By doing so, the developer will diagnose the cause of errors on 

the exception handling code. Moreover, the developer may gain a fine-grained 

view of how exceptions are handled (e.g., logging, presenting an error message to 

the user, or swallowing). After discovering the cause of the exception handling 

error the implementation steps 3, 4, and 5 should be repeated until every exception 

is adequately handled on the advised application. This step based on manual 

inspections is necessary in this approach, because the exception handling contracts 

(defined on SAFE tool) can only express simple constrains concerning the way 

the exception should be caught (e.g., which element should handle the exception). 

Thus, errors concerning the actions performed inside the handler after catching the 

exceptions can only be discovered by manual inspections in the current approach. 

We can observe that the steps presented above - that compose the 

verification approach - can also be applied in OO development, with slight 

modifications. For instance, at step 1, instead of discovering the exception 

interfaces of aspects to be woven with the base code, SAFE tool could be used to 
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discover the exception interfaces of classes (specially the runtime exceptions 

which are not defined on class methods signatures) to be composed with the 

basecode. However, in this chapter we focus on the development of aspects, and 

the impact of aspect weaving on the exceptional behavior of the system. In the 

following sections, we exemplify how our approach can be used to assure the 

quality of the exception handling code in real implementation scenarios involving 

application and library aspects.  

 

6.4. 
Worked Example  

To illustrate our approach, we selected two real change scenarios to be 

applied to the first AO version of Health Watcher (HW) system (Soares, 2004; 

Greenwood et al., 2007) – the Web-based information system described in 

Chapter 3. The change scenarios are: (1) to monitor the performance of http 

requests, and (2) add the transaction management support to the persistence 

operations.  

A common strategy for monitoring an application is to include 

instrumentation code around system operations. However, this approach requires 

scattering duplicate code in many places of the source code, which can be tedious, 

error-prone, and quite difficult to maintain. In our case study, we reused the 

Glassbox Inspector (Bodkin, 2005), an aspect monitoring library, in order to 

implement the monitoring concern in the HW system. In our case study, the 

transaction management concern – which is also a typical crosscutting concern - 

was also implemented using an aspect library. We reused the transaction 

management aspect library built on top of Hibernate 
36

 (Colyer, 2004), an open 

source object relational mapping tool for a Java, to implement this concern.  

Figure 28 illustrates the architecture of HW system after composing it with 

the aspect libraries described before (i.e., the Monitoring Aspect Library, and the 

Hibernate Aspect Library).  
 

 

 

 

                                                

36
 http://www.hibernate.org 
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Figure 28. The extended architecture of Health Watcher system. 

 

As presented in Chapter 3, the HW system also contains a set of application 

aspects that implement crosscutting concerns such as: concurrency control, 

persistence (partially) and exception handling (partially). For the sake of 

simplicity, however, Figure 28 focuses on the crosscutting concerns implemented 

in this case study and omits the others. The HW elements presented in Figure 28 

will be detailed on the next subsections which describe the approach’s steps. Each 

step aims at assuring that the aspects integrated with the base code will not 

threaten the application robustness in the presence of exceptions. 

 

6.4.1. 
Discover the Exception Interfaces of Aspects 

The first step of our approach is to discover the exception interfaces of every 

aspect advice that affect the base code in each change scenario. In our case study, 

the aspects that intercept the base code are:  

(i)  ServletRequestMonitor – a library aspect that directly intercepts every 

application request operation (see Figure 28); and  
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(ii)  HibernateSessionManagerHW – an application aspect that extends the 

HibernateSessionManager abstract library aspect in order to specify the 

join points in the base code that needs to be intercepted to demarcate a 

system transaction (see Figure 28).   

The SAFE tool recursively analyzes the woven bytecode and calculates the 

exception interface of every aspect advice (analyzing every method called from 

them and every advice that may intercept them). Listings 20 and 21 illustrate the 

partial code of the ServletRequestMonitor and HibernateSession-

ManagerHW and the exception interfaces reported by SAFE for some advices
37

. 

 

1. public aspect ServletRequestMonitor { 

2.  

3.    //Intercepts every servlet request operation 

4.    public pointcut servletRequestExec(): 

5.       within(HttpServlet+) &&  

6.       (execution(* HttpServlet.do*(..)) || 

7.        execution(*HttpServlet.service(..)))…; 

8.  

9.    after() returning:monitorEndAllCases() { 

10.       … 

11.       Response response = responseFactory.getLastResponse(); 

12.       if (response != null) { 

13.            response.complete(); 

14.       } else { 

15.           logError("Monitoring problem: "  +  

16.              "mismatched monitor calls"); 

17.       } 

18.   } 

19.    … 

20. }                   

 

 

 

Aspect: ServletRequestMonitor 

Advice Type: after returning 

Sequence: 01  

Advice Method Signature: 

glassbox.monitor.ui.ServletRequestMonitor: void ajc$afterRetu  

rning$glassbox_monitor_ui_ServletRequestMonitor$4$9166ad69(…) 

Exception Interface: org.aspectj.lang.SoftException                   

 

                                                

37
 Some parameters are omitted for readability 
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Listing.20. The Partial code of ServletRequestMonitor and the exception 

interface of the after returning advice. 

 

1. public aspect HibernateSessionManagerHW 

2.     extends HibernateSessionManager { 

3.    … 

4.  //Intercepts every DAO operation 

5.  Object around() : operationDAO() { 

6.    … 

7.    Transaction tx = null; 

8.    try { 

9.      tx = session.beginTransaction(); 

10.      ret = proceed(); 

11.      tx.commit(); 

12.    } catch(HibernateException ex) { 

13.       if (tx != null) tx.rollback(); 

14.       throw getHibernateExceptionManager() 

15.              .createDomainException(ex); 

16.     } finally { 

17.  session.close(); 

18.     } 

19.     return ret; 

20.   } 

21.  … 

22. }   

 

Aspect: HibernateSessionManagerHW 

Advice Type: around 

Sequence: 01  

Advice Method Signature: 

hibernate.HibernateSessionManagerHW: Object ajc$around$hiber  

nate_HibernateSessionManagerHW$1$a506ba1(…) 

Exception Interface: org.aspectj.lang.SoftException 

 

Listing.21. Partial code of HibernateSessionManagerHW and the exception 

interface of the around advice. 

 

As detailed in Chapter 5 the SAFE tool runs on the woven bytecode. When 

building the woven bytecode, the AspectJ weaver converts every aspect into a 

standard Java class (called aspect class), and each piece of advice into a public 

non-static method in the aspect class whose signature is automatically generated 

(see Chapter 5, Section 5.1.1). In the Listings above the “Advice Method 
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Signature” contains the automatically generated method signatures for the 

advices presented above. “Sequence” specifies the order in which the advice was 

defined on the bytecode. 

At this step, the developer may optionally investigate the causes of the 

exceptions that flow from each aspect advice - since this information is also 

calculated by the SAFE tool during the exception-flow analysis
38

. Table 13 below 

presents the causes of the org.aspectj.lang.SoftException, which may be 

thrown by the after returning advice defined on the ServletRequestMonitor 

aspect. 

We can observe from Table 13 that the 

org.aspectj.lang.SoftException may be caused by three different exceptions 

that are softenized (i.e., handled, wrapped in a SoftException and then re-

thrown). The information presented in this table exemplifies how complex it can 

be to try to reason about the flow of exceptions without a tool support. A similar 

analysis can be performed to find out the possible causes of SoftException that 

can flow from the Hibernate aspect library. 

 

 

 

Original Exception 

 

Exception Path before it is Softened 

java.lang.IllegalArgumentException (Signaler)<glassbox.debug.TraceAdvice: void ajc$afterThro 

wing$ glassbox_debug_TraceAdvice$3$4c73158c(…)> 

(Handler)<glassbox.monitor.ui.ServletRequestMonitor: void 

ajc$ afterReturning$glassbox_monitor_ui_ServletRequestMonitor 

$4$9166ad69(…)> 

(Action) net.sf.hibernate.LazyInitializationException captured 

by java.lang.Exception (Converted to SoftException) 

Net.sf.hibernate.LazyInitializationException (Signaler)<glassbox.debug.TraceAdvice: void ajc$afterThr 

owing$glassb ox_debug_TraceAdvice$3$4c73158c(…)> 

(Handler)<glassbox.monitor.ui.ServletRequestMonitor: void 

ajc$ afterReturning$glassbox_monitor_ui_ServletRequestMonitor 

$4$9166ad69(…)> 

(Action) net.sf.hibernate.LazyInitializationException captured 

by java.lang.Exception (Converted to SoftException) 

java.net.SocketException (Signaler)<glassbox.debug.TraceAdvice: void ajc$afterThr 

owing$glassbox_debug_TraceAdvice$3$4c73158c(…)> 

                                                

38
 The information presented on tables was extracted from the SAFE tool output, which can be 

presented in two formats: XML and .xls (Microsoft Excel) files. 
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(Handler)<glassbox.monitor.ui.ServletRequestMonitor: void 

ajc$ afterReturning$glassbox_monitor_ui_ServletRequestMonitor 

$4$9166ad69(…)> 

(Action) Subsumption: java.net.SocketException captured by 

java.lang.Exception (Converted to SoftException) 

Table 13. Exception paths calculated by SAFE tool. 

Since the SAFE tool is based on the static analysis of Java bytecode, the 

information presented in Table 13 are not user friendly since it presents the 

automatically generated method signatures for each aspect advice. On the other 

hand, then advantage of working on Java bytecode instead of the AspectJ source 

code is that we can incorporate in our analysis the exceptions that flow from 

aspect libraries and OO libraries (see Section 6.6).  

 

6.4.2. 
Specify the Exception Handling Contracts 

After discovering the exception interfaces of every aspect advice that affect the 

base code, we need to define the elements that should be responsible for handling 

them. In our approach, such information is represented in terms of a set of 

exception handling contracts. Listing 22 illustrates the exception handling 

contracts defined (i) to the instance of SoftException thrown by the after 

returning advice presented above, and (ii) to one advice of the 

HibernateSessionManagerHW aspect that may throw HibernateException. 

The <signaler> and <handler> elements contain an expression (similar to a 

pointcut expression) that will match the methods signature responsible, 

respectively, for signaling and handling the exceptions.  

 

1. <contract id=1 description=”Glassbox Contract”> 

2.   <exception type=”org.aspectj.lang.SoftException”> 

3.     <signaler signature=”glassbox.monitor.ui.   

             ServletRequestMonitor.*”/> 

4.     <handler signature=”hw.handling.ErrorIsolation” 

5.           type=”same_exception”/> 

6.   </exception> 

7. </contract> 

 

8. <contract id=2 description=”Hibernate Contract”> 

9.  <exception type=”org.aspectj.lang.SoftException”> 

10.   <signaler signature=”HibernateSessionManagerHW.*” /> 
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11.   <handler signature=”hw.handling.HibernateException 

12.             Handling.*” type=”same_exception”/> 

13. </exception> 

14. </contract> 

  Listing.22. Exception Handling Contracts. 

 

 

The first contract (id=1) defines that the ErrorIsolation aspect should 

handle any instance of SoftException signaled by any advice defined on the 

ServletRequestMonitor class. The second contract (id=2) states that the 

HibernateExceptionHandling aspect is responsible for handling instances of 

SoftException signaled by any advice defined on the 

HibernateSessionManagerHW aspect
39
. Moreover, both contracts state that 

such exceptions should be caught by a catch clause whose argument is of the 

same type as the exception being caught (lines 5 and 12). 

Each handler defined on the contracts above implements a different 

exception handling policy (see Section 4): the hw.handling.ErrorIsolation is 

based on Error-isolation, and hw.handling.HibernateException is based on 

App-specific error handling. The developer does not want exceptions that escape 

from the Monitoring Aspect Library to affect the application normal control flow 

(see Figure 28). On the other hand, if an exception occurs during data persistence 

(that relies on the transaction concern), the developer wants to notify that the 

requested transaction could not be performed. The exception thrown by the 

Hibernate Aspect Library should flow until the GUI layer, and each servlet should 

then handle the SoftException and present a proper error message to the user 

(see Figure 28).  

 

                                                

39
 As illustrated in Section 5 the around advice has a different representation on the woven 

bytecode when compared to the before and after advices. The around advice is represented by a 

static method on the affected class. Therefore, the exception handling contract is not only checked 

besed on the string matching between the information specified on the contract and the advice 

method signature on the woven bytecode. 
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6.4.3. 
Implement Exception Handling Code 

 At this step the exception handler aspects specified on the contracts defined 

above should be implemented. Listing 23 illustrates the partial code of 

ErrorIsolation aspect. 

 

1. public aspect ErrorIsolation { 

2.    … 

3.    public pointcut scope() :  

4. within(ServletRequestMonitor); 

5. 

6.    void around():adviceexecution() && scope()){ 

7. try { 

8.      proceed(); 

9. } catch (SoftException e) { 

10.    log(e); 

11. } 

12.   } 

13.  } 

   Listing 23. Code snippet for the ErrorIsolation aspect. 

 

 

 

In order to isolate the exception that flows from the monitoring aspect 

library, the exception handling aspect (ErrorIsolation in Figure 28) needs to 

directly intercept the aspect library bytecode
40

. Doing so, the ErrorIsolation 

aspect prevents the monitoring exception from affecting the flow of execution of 

the application.  

Similarly, the HibernateExceptionHandler aspect is implemented to 

handle the exceptions thrown by Hibernate Aspect Library. This aspect intercepts 

the base code, more specifically the doGet(..) and doPost(..) methods, using 

an around advice. This aspect handles the HibernateException and presents a 

specific error message to the user. Listing 24 illustrates the partial code of 

HibernateExceptionHandler aspect. 
 

1. public aspect HibernateExceptionHandler { 

2.    

3.    public pointcut scope():  

                                                

40 Since version 1.2, AspectJ allows the weaving of aspects into bytecode (that may contain woven 

aspects) by using inpath compile option. 
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4.     within(hw.gui.* && HttpServlet+) && 

5.          (execution(* HttpServlet.do*(..)) ||  

6.           execution(* HttpServlet.service(..))); 

7. 

8.    void around():scope()){ 

9. try { 

10.      proceed(); 

11. } catch (SoftException e) { 

12.    presentUserMessage(e); 

13. } 

14.   } 

 Listing 24. Code snippet for the HibernateExceptionHandler aspect. 

 

6.4.4. 
Calculate Exception Paths 

In order to assure that the exception handling solutions are correctly 

implemented, we use the SAFE tool to compute the exception paths for the 

exceptions signaled by the monitoring and the transaction management 

crosscutting functionalities. Listing 25 illustrates some of the exception paths 

computed by the SAFE tool
41

. Besides calculating the exception paths, the SAFE 

tool also checks whether they obey the exception handling contracts defined at the 

previous step. The automatic checking of exception handling contracts is useful 

when many exception paths should be analyzed. During the exception handling 

contract verification on the exception paths, we can observe that the 

SoftException is not handled by the element specified in the contract (see 

Listing 25). 

 

 

Exception: org.aspectj.lang.SoftException 

Exception Path:  

 (Signaler)<ServletRequestMonitor: ajc$afterReturning…(…)> 

 (Intermediate)<ErrorIsolation: void ajc$around$proceed…(…)> 

 (Handler)<ErrorContainment: ajc$around$ErrorIsolation…(…)> 

 (Action)org.aspectj.lang.SoftException capured by   

         org.aspectj.lang.SoftException 

Contracts: Glassbox Contract (id:1) obeyed 

 

 

Exception: org.aspectj.lang.SoftException 

                                                                                                                                 

 
41

 We omit package names, return types and advice IDs for simplicity. 
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Exception Path:  

 (Signaler)<ComplaintRepositoryRDB: search_aroundBody1$advice(…)> 

 (Intermediate)<ComplaintRepositoryRDB: search (…)> 

 (Handler)<HealthWatcherFacade: searchComplaint (…)> 

 (Action)org.aspectj.lang.SoftException capured by java.lang. Exception 

Contracts: Hibernate Contract (id:2) broken 

 

 

Exception: org.aspectj.lang.SoftException 

Exception Path:  

 (Signaler)<EmployeeRepositoryRDB: search_around Body1$advice(…)> 

 (Intermediate)<EmployeeRepositoryRDB: search (…)> 

 (Handler)<HealthWatcherFacade: Object searchEmplyee(…)> 

 (Action)org.aspectj.lang.SoftException capured by java.lang. Exception 

 Contracts: Hibernate Contract (id:2) broken 

  Listing 25. List of Exception Handling Contracts. 

 

 

Besides calculating the exception paths, the SAFE tool also checks whether 

they obey the exception handling contracts defined at the previous step. During 

the exception handling contract verification on the exception paths, we can 

observe that the org.aspectj.lang.SoftException is not handled by the 

element specified in the contract (see Listing 22).   

 

6.4.5. 
Manually Inspect the Exception Handling Code 

During code inspection, we observed that the instance of SoftException 

that can
42

 be signaled by HibernateExceptionHandler is mistakenly handled by 

a “catch all” clause defined on the system Facade (see HealthWatcherFachade 

class in Figure 4) - before it can reach the join point intercepted by the handler 

aspect (HybernateExceptionHandler) presented in Listing 24.  

This kind of problem could not be anticipated, during the development of 

HybernateExceptionHandler and was only discovered by the SAFE tool. One 

way of solving this broken exception handling contract is to replace the “catch 

all” clause defined in the Facade element by specific catch clauses (one per 

exception handled at this point). Doing so, the Hibernate exception will flow until 

                                                

42
  This exception can be signaled in some circunstances according to the static analysis 

information. 
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it reaches the join points intercepted by the exception handling aspect in the GUI 

layer.  

This manual inspection step was performed on the empirical study presented 

in Chapter 3, in order to diagnose specific exception handling failures such as the 

causes the incorrect user message (i.e., the catch clause handled the exception 

and presents a message to the user that is not related to the failure that happened) 

detailed  in Chapter 3, Section  3.1.4. 

 

6.5. 
The Approach’s Effectiveness x the SAFE Tool’s Precision 

As detailed in Sections 6.3 and 6.4 most of the approach’s steps depend on 

the information computed by the SAFE tool. For this reason, the approach’s 

effectiveness is strongly related to the precision of the tool output. During the 

implementation of the exception-flow static analysis algorithm of SAFE, we had 

to deal with a number of implementation trade-offs (detailed in Chapter 5) to 

balance between the tool’s usefulness and the precision, such as:  

Flow-Insensitive Analysis. In SAFE the exception interfaces of methods 

comprises the set of exception signaled (directly through the throw statement or 

indirectly through method calls) and not handled inside the method. The analysis 

performed by SAFE to discover the exception interfaces does not take into 

account contextual information - which could establish that a specific exception 

cannot actually be thrown at runtime. For instance, the method nextElement() 

defined in java.util.Enumeration class (Gosling et al., 1996) may signal 

NoSuchElementException if no element is found on the Enumeration. 

However, if a call to this method is guarded by a call to hasMoreElements() 

method (which returns false in case there is no element in the enumeration), the 

instance of NoSuchElementException will never be signaled in runtime. Though 

a context-sensitive analysis could yield more precision, but its cost needs to be 

further investigated. 

The implementation tradeoffs together with the inherent limitations of any 

static analysis represent the sources of imprecision to the exception analysis 

algorithm, which can lead to exception paths that can never occur in runtime 

(spurious paths). Unfeasible paths are a common problem in every static analysis, 

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA



 140 

and can be addressed by: (i) human examination - to identify spurious paths 

during manual inspections; and (ii) the definition of new techniques to 

automatically remove as many spurious links as possible
43

.  

In our approach, the spurious exception paths were identified during the 

manual inspections of the exception handling code - guided by the exception paths 

reported by the SAFE tool - and then skipped. Table 14 presents the results of 

applying the SAFE tool to find the exception paths of the AO versions of Health 

Watcher, Mobile Photo and JHotdraw systems
44

 - collected during the empirical 

study presented in Chapter 3.  

 

System Reported Spurious Category 1 Category 2 

Health Watcher AO v1 212 0 0  0  

Health Watcher AO v9 338 0  0 0  

Mobile Photo AO v4  117 11  0  11 

Mobile Photo AO v6  132  18 0  18 

AJHotDraw 281 37  37 0  
   

Table 14. Reported and spurious exception paths. 

 

The first column lists the system considered, the column 2 lists the number 

of reported exception paths, the column 4 lists the spurious exception paths that 

were detected during manual inspections, the column 5 lists the number of 

spurious exception paths that can be detected using a context-sensitive call graph 

construction algorithm (Category 1) and column 5 contains the number of 

spurious exception paths can be removed by a more precise analysis (Category 2).  

The number spurious exception paths found in this study is sufficiently low 

to make the SAFE tool useful in practice. A detailed look at these spurious 

exception paths reveals the reasons why they occur and tell us how we can 

improve the SAFE tool
45

. The spurious exception paths found in Mobile Photo 

were caused after throwing advice that unconditionally threw an exception - 

overriding the exception previously thrown by the advised code. Listing 26 

                                                

43 Some unfeasible paths, however, cannot be automatically removed due to intrinsic limitations of 

static analysis. 
44

 The information presented in this table does not include the exception paths that originated to 

libraries to which we did not have access to the source code. 
45 We believe that the same behaviour will happen in other AO systems, since the set of target 

systems studied englobes the different ways of handling exceptions using aspects as described in 

Chapter 3. However further studies still need to be performed to assure this idea. 
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presents the after throwing advice code, and Listing 27 illustrates the effect of 

this advice on the woven bytecode. 

 

after(String mediaFile) throwing(Exception e) throws 

  ImagePathNotValidException:readMediaAsByteArray(mediaFile){ 

  throw new ImagePathNotValidException( 

   "Path not valid for this image:"+mediaFile); 

} 

   Listing 26. Code snippet for an after throwing advice. 

 

1. public void method() throws Exception{ 

2.   try{  

3.    //original method body 

4.     ... 

5. } catch(Exception t){ 

6.     <AspectID>.aspectOf().ajc$afterThrowing$<Id>(…); 

7.      throw t; 

8. } 

 Listing 27. Effect of the after throwing advice on the woven bytecode. 

 

 We can observe that the exception path that starts in line 7 of the code 

snippet presented in Listing 27, can never happen in runtime because the after 

throwing advice unconditionally
46

 throws an instance of 

ImagePathNotValidException, and consequently, the statement defined in line 

7 will never be executed. We believe that detecting statements that 

unconditionally throws exceptions during the exception analysis would improve 

the tool precision in such scenarios.  

The GUI layer of AJHotdraw system is based on the definition of a set of 

GUI components that inherits from the same abstract class and overrides some of 

its methods. Listing 28 illustrates exception paths that include method calls 

defined in GUI components. Some exception paths share the same method name 

(i.e., mouseDown()) – represented in bold in the listing below.  

 

org.jhotdraw.standard.AbstractFigure.clone() 

org.jhotdraw.contrib.GraphicalCompositeFigure.clone() 

org.jhotdraw.standard.CreationTool.createFigure() 

org.jhotdraw.standard.CreationTool.mouseDown() 

org.jhotdraw.figures.TextTool.mouseDown() 
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org.jhotdraw.figures.ConnectedTextTool.mouseDown() 

org.jhotdraw.util.UndoableTool.mouseDown() 

org.jhotdraw.standard.SelectionTool.mouseDown() 

org.jhotdraw.samples.javadraw.MySelectionTool.mouseDown() 

org.jhotdraw.standard.StandardDrawingView$DrawingViewMouseListener. 

mousePressed() 

   Listing 28. List of method calls composing an exception  path. 

 

The partial code of CreationTool.mouseDown() is illustrated below. We 

can observe that this method does not directly calls the TextTool.mouseDown() 

– there is no instance of TextTool class in the scope of the method. This method 

only calls the method mouseDown() defined the superclass  which is the same 

superclass of TextTool.  

 

//Creates a new figure by cloning the prototype.  

public void mouseDown(MouseEvent e, int x, int y) { 

     super.mouseDown(e, x, y); 

     setCreatedFigure(createFigure()); 

     ... 

 } 

Listing 29. Code snippet of CreationTool.mouseDown() method. 

 

These spurious paths were, therefore, caused by the imprecision of the 

underlying call graph builder module that uses the context-insensitive points-to 

algorithm available in SPARK framework. Studies have reported that the use of 

Data-Reachability and context-sensitive analysis algorithms can improve the 

precision of the call graph and consequently of the exception paths calculated 

when traversing it (Liang et al., 2005; Fu and Ryder, 2007). Such algorithms 

would check the values stored in program values, to decide, for instance, which 

methods could be called, when a method defined in a supertype is called.  

 

6.6.Discussions and Lessons Learned 

This section provides further discussion of issues and lessons we have 

learned while reusing aspect libraries and adopting our reuse approach in different 

scenarios. 

                                                                                                                                 

46 There is no if clause guarding the exception thrown by the after throwing advice. 
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Static analysis x Testing Exceptional Conditions. Our approach relied on 

static analysis in order to discover which exceptions may flow from aspect 

libraries. To discover such exceptions we could alternatively write integration 

tests to verify whether library aspects affect the application code as expected 

under exceptional conditions.  However, the test of exceptional conditions is 

inherently difficult, due to the huge number of possible exceptional conditions to 

simulate in a system and the difficulty associated with the simulation of most of 

such scenarios (Bruntink et al., 2006). 

Using Stubs. Before performing the static analysis, the SAFE tool requires 

the aspect library to be combined with a base code. Since aspects are intrinsically 

related to the concerns they affect. The same restriction is present in automated 

testing approaches for aspects (Lopes and Ngo, 2005; Xie and Zhao, 2006). Thus, 

if the developer wants to apply this approach before the base code is implemented, 

“stub implementations” should be provided to every advised method. 

Load-time weaving. As mentioned before, some aspect libraries can be 

reused in load-time. However, in order to assure that the aspect library reused at 

load-time will not impair system robustness, it is fundamental to prepare their 

code beforehand for the exceptions that may flow from aspect libraries in runtime. 

This can be accomplished by combining the library aspects and the application 

code at compilation time and then adopting the approach proposed here.  

Documentation of Aspect Libraries. Current aspect libraries neither 

explicitly document which aspects will affect the base code, nor the exceptions 

that may flow from library advices that affects the base code. As we have 

discussed in this thesis, such information is very useful when developing robust 

systems: the developer wants to make sure that a piece of third party code will not 

threaten the robustness of the application (exceptional scenarios). The SAFE tool 

can also be used to automatically generate the exceptional interfaces of aspect 

libraries helping to document them.  

Aspect-library Development. The case study presented in this chapter 

focused on the reuse of aspect libraries, but we could observe that some 

approach’s steps could be useful when the developer implements her/his own 

application aspects and aspect libraries. Using a similar approach the aspect 

library developer could isolate the base code from exceptions that may flow from 

library code.  
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Static Analysis based on Java bytecode. The SAFE tool is based on the 

static analysis of Java bytecode. Then advantage of working on Java bytecode 

instead of the AspectJ source code is that we can incorporate in our analysis the 

exceptions that flow from aspect libraries and OO libraries. On the other hand the 

SAFE tool output that the results of the bytecode static analysis, is not , such 

automatically generated method signatures are presented to SAFE users. We are 

currently devising a strategy to map the advice representation on the bytecode to 

its representation on the source code. This will make the tool output more user-

friendly.  

Dependence on the User Input. The user needs to specify a set of 

information to be used by the SAFE tool during the analysis: (i) the application 

packages (see Chapter 5, Section 5.3.2.1), and the (ii) exception handling 

contracts. The SAFE tool relies on this information to classify the exception paths 

according to its Signaler-Handler relationship, and find out the broken exception 

handling contracts respectively. If the user fails to specify a relevant application 

package, SAFE may report a wrong exception path classification and 

consequently wrong Signaler-Handler relationships. If the user fails to define the 

exception handling contracts (e.g., specify a wrong contract), the tool may report a 

wrong broken contract. In cases where the user forgets to specify an exception 

handling contract, the contract violation will not be automatically reported by the 

tool, but can be eventually discovered during manual inspection of the exception 

handling code. 

 

6.7.Summary 

This chapter presents an approach, supported by SAFE tool, which aims at 

assisting the developer when checking the reliability of the exception handling 

code of AO applications. Such applications may contain application aspects 

and/or library aspects – a new reuse artifact available nowadays. This approach 

supports the reasoning about the exceptions that can flow from aspects; and 

provides brief guidelines to the developer of how such exceptions should be 

handled.  

The limitations of this approach are strictly related with the limitations of 

the static analysis tool that supports it. During the implementation of SAFE we 
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had to deal with a set of trade offs that involved the tool precision, the processing 

cost and the usefulness of the information provided by it. Therefore, due to some 

implementation decisions the SAFE tool may report false broken exception 

handling contracts. 

However, the number of false broken contracts found in the case study 

presented in this chapter was sufficiently low assuring that the SAFE tool is in 

fact useful in practice. Moreover, the false broken contracts can be are easily 

identified during the manual inspections of the exception handling code guided by 

the exception paths reported by the SAFE tool (one of the approach’s steps).   

The analysis of the broken contracts, revealed the reasons why they occur 

and identified where we can improve the tool. The exception-flow analysis 

implemented by SAFE can be improved by using contextual information (Liang et 

al., 2005) or Data-Reachability algorithms (Fu and Ryder, 2007). Both would 

reduce the number of false broken contracts reported by the analysis.  

 

 

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA




